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AERODYNAMIC CHA~CTERISTICS OF VOLUME ROD CONSTRUCTIONS 
IN STATIONARY FREE-MOLECULAR FLOW* 

A.V. SHVEDOV 

The flow of a high-velocity current around a volume rod construction CRC) 

/l/ - that is, a spatial structure consisting of a large number of 
cylindrical rods fastened at their ends, and length of each one of which 
is significantly less than the overall size of the construction, is 
considered well-known concepts /2, 3/ are used. 

It is established that, to a first approximation, the resistance of 
an RC, the average over the cell of cell properties which are the same 
for all the cells, is proportional to the volume of the RC, if by this 
we mean the volume of the polyhedron whose edges are the axes of the 
exterior rods. It is explained that the aerodynamic moment acting on 
such an RC with respect to its centre of mass is equal to zero. A number 
of RCs with a high degree of symmetry in the arrangement of the rods in 
the cells are investigated. For these, we discover the absence of a 
transverse force in the case of local-diffusional scattering of the 
molecules by portions of the rod surfaces. 

1. Rod constructions fRCs1, which enable us to construct light pieces of astronautical 
apparatus of significant dimensions, are spatial configurations consisting of a large number 
N of cylindrical rods, fastened at the ends, of diameter di - d, and length tl - 1, 1 Q 21$ 
N, where d<l<L, where L is the characteristic dimension of the construction overall 
(Fig.1). 

When a free-molecular current flows part an RC /2/, an aerodynamic shadow is formed 
behind each rod, which spreads gradually as a result of thermal motion of the molecules. We 
distinguish a "strong" shadow zone, where the velocity head is close to zero, and a "weak" 
shadow zone, where the velocity head is of the same order as in the unperturbed current. The 
distance g at which the final spreading of the strong shadow occurs is g =: M dl2, where 
M>i is the Mach number. 

Under orbital flight conditions g< 1, that is, the strong shadows of the rods spread 
to a distance much less than the characteristic dimension of the rods. As a consequence of 
this, strong mutual shading of the rods can only occur at portions adjacent to the rod attach- 
mentcorners;that is, on a relatively small part of the rod surface. Therefore, the influence 
of strong shadowing on the aerodynamic characteristics of the RC is insignificant. It can be 
proved that the relative error on neglecting strong shadowing does not exceed 0 (MdlZ) < 1, 
and the average value (over all possible orientations of the RC in the current) of this error 
is 0 (d/l) < 1. In this paper, we do not take account of strong shadowing, and the indicated 
terms of the estimate are omitted everywhere below. 

In weak mutual shadowing of the rods, the expanding and spreading shadow of each rod 
falls, as a rule, on a large number of rods located downstream, if there are such rods. And, 
contrariwise, on each rod there fall, as a rule, the shadows of a large number of rods that 
are located upstream, if there are such rods. In other words, weak mutual shadowing of the 
rods leads to a gradual attenuation of the current in the RC. Weak shadowing will be con- 
sidered below. 

To describe the local properties of the RC, we introduce an intermediate dimension: A: 
E--gA((L. Let Ps be a sphere of radius h centred at the points R. 

We define the thickness x of the RC at the point R as the ratio of the total length of 
the axes of the rods arranged in Ps to the volume of PR. It is obvious that the thickness 
x does not depend on the diameters of the rods located in PR, and 

x = Ill-% 

where K is a coefficient whose value is the same for structures possessing local geometric 
similarity. 
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We will consider in more detail some of the simplest "regular" structures: $-ray and 6- 
ray structures (Fig..Za, b, respectively). Four rods at different angles to each other emerge 
from each vertex of the 4-ray structure; 6 rays, directed pairwise along three mutually 
perpendicular axes, emerge from each vertex of the 6-ray structure. The lengthofeach rod of 
the structures is the same and equal to I, and we will also take the diameter to be the same 
and equal to d. We call a subset of rods oriented the same way as family. The four-ray 
structure is the union of four rod families, and the 6-ray structure is a union of three 
families. A calculation gives K = 3'1i4 for the 4-ray structure, and K = 3. for the 6-ray 
structure. 

X 

Fig.1 Fig.3 

Fig.2 

2. We obtain an expression for that part of the RC resistance which is due to the effect 
of incident molecules (superscript +I of the incoming current. Considering a homogeneous RC 
(one for which all the properties obtained, like the thickness x, by averaging over Pn,do not 
depend on the position of the point R) we explain that for it this part of the resistance 
coefficient is given by a power series in the parameter a = dL/P. Here, the leading term of 
the series is linear in e. 

Everywhere below, we will mean by the volume of an RC the volume of the polyhedron whose 
edges are the axes of the external rods of the RC. Here, we will assume that no fewer than 
three rods that do not lie in the same plane emerge from any vertex-otherwise, the polyhedron 
will have degenerate two-dimensional fragments. 

Let XYZ be a Cartesian system of coordinates connected with the RC and centred at 
R - an internal point of the RC. To describe the orientation of the rods in P~and the current 
directions, we introduce a spherical system of coordinates centred at R (Fig.3). We will 
measure the angle 5 from the X axis to the direction of the unit vector w, collinear with 
the rod axis, and the angle 'p from the Y axis to the projection of o onto the YZ plane. 
The unit-vector u = U/i U 1, collinear with the current velocity U, will be specified anal- 
ogously, measuring the angle * from the X axis to the direction of the vector u, and the 
angle Q from the Y axis to the projection of the vector u on the YZ plane. Since the 
position of the rod does not change if the direction of w is reversed, and the molecule 
interaction picture is transformed in a centrally-symmetric manner when the direction of the 
vector u is reversed, it is sufficient to consider the following region of the angular 
variables: 
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The orientation of the rods in PR can be described by specifying the probability 8P 
that the point T randomly (with a constant linear probability density) chosen from the set of 

points of the union of the rod axes, arranged in PR, lies on the rod whose axis is oriented 

in the angular range [E, E + El, [cp, cp + 3~1, and the diameter lies in the range M, d + Nl: 

aP = f (E, cp, @in Eagacpad (ill f sin EaEacpad = 1) 

where f (E, cp, d) is the probability density. 

Let q be the local coefficient of RC attenuation of the free-molecular current, which 

characterizes the relative reduction in the velocity head g when the current travelsadistance 

ah: aqiq = -tjah. We can ascertain that on neglecting the transverse thermal motion of the 

molecules the quantity 11 is equal to the ratio of the total area of the projection (in a 

plane perpendicular to the current velocity vector) of all the rods located in PR to the 

volume of PR: 

11 = x sss sdf sin SaEacpad 

where s = s(E,m,E,@) is the modulus of the projection of the unit vector 0, directed along 

the ray (5, cp), onto the ray perpendicular to the ray (2, @): 

s = [I - (co9 5 cos E + sin E cos rp sin 9 cos Q + 

sin E sin 'p sin E sin @)2]'/~ 

We can write the attenuation coefficient in the form 

9 = (d/P)A (E,, @) 

where d,1 are the characteristic diameter and length of the rods; the quantity Aisdetermined 
by the orientation of the rods relative to the current. 

Thus, for a regular 4-ray structure we find 

A = (3w16)(C, + s1 + c, + S,) 

C1,2= [i- (1/$cosE* 1/~sinBcos;Q)2]'i* 

In particular A = 3”1*2-‘/~ z 0.92 where the current is incident parallel to some family 
of rods; A = 37d16 z 1.02 on average over all the possible orientations of the RC relative 

to the flow. 

For a regular 6-ray structure, we find 

A = sin E + (1 - sin* S cos 2 @)'I* + (1 - sin a 3 sin2 0)“s 

In particular, A=2 when the current is incident parallel to some family of rods; 

A = 1/8z 2.45 when the current is incident along an axis equally-inclined to the rods; 

A = 3nl4 on average over all possible orientations of the RC relative to the current. 

To find the velocity head g at a point R located inside the RC, it is necessary to 

integrate over the linear coordinate h along the straight line passing through R and parallel 
to the velocity U of the incoming current, from the point where this line enters the RC up 

to R. We obtain q = q0 exp (- i $h), where q0 is the high-velocity pressure in the unper- 

turbed current. 
We introduce the volume density FXA of the resistance force XA as the ratio of the 

total resistance force acting on the rods in PR to the volume of PR. Obviously 

The error is due to neglecting the thermal motion of the molecules in considering the 
interaction of the current with the rods. 

Integrating (2.1) over the normalized volume of the RC (P/L*), we obtain for the 
corresponding part of the RC resistance coefficient 

c:., = .Gd(q0L2) = 
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2~3 sss {A IR eXP [-- E s d Ii-s 8 (h/L)]} 8 (v/L’) -k 0 (EM-‘) (2.2) 

For a homogeneous RC, A = con&, and then (2.2) becomes 

CL, = 2sA SSS {exp [ - eA (p/L)]} 8 (V/Ls) + 0 (EM-~) (2.3) 

where p is the distance from the entry into the RC of the straight line that contains the 
point R and is parallel to the velocity of the incoming current, to the point R. Expanding 
the exponent in (2.31 in a power series in the small parameter .a<% and integrating term- 
by-term, we obtain 

Cxa+ = 2E.d (v/L3)(i - E.'iB) + 0 (Es, EM-~) (2.4) 

B = V-‘sss (plL)W 

where V is the volume of the homogeneous RC, and B is a function of its shape and orientation. 
Thus, for a sphere subscript s) of diameter D; a right circular cylinder (subscript cyl) 

of diameter D and height H and for a right circular cone (subscript con) of diameter D and 
height H',having a set D= D, we find: D, = 3/8; Bcyi = Hl(2D), B,,, = H&%D) if the axis of the 
cylinder (cone) is parallel to the flow; Bcvl = 4/(32x), Bcon = l/n, if the axis is perpendicular 
to the flow. 

We remark that at finite values of the Mach number M, the effect on the RC of the 
molecules undergoing their first collision may lead to the appearance of a transverse force 
(perpendicular to the velocity of the incoming current). We can ascertain, however, that the 
transverse force coefficient is small: CL = O(s?tF). Therefore, the transverse force is not 
taken into account in this paper. 

3. We will consider the effect of the force on the RC of the molecules scattered by the 
rods (superscript -). It was pointed out in /3/ that the velocity of the molecules of the 
incoming current decreases several-fold after the first collision with a surface if T,IT,< 
1, where T, is the surface temperature and T, is the braking temperature. So the aerodynamic 
effect component coefficients for the scattered molecules on the RC is of the order of a& 
where @ = (n [(y - ~)/yJTiT~~/l, y = cp /C v is the ratio of the specific heats, and T is the 
effective temperature of the singly-scattered molecules. On further collisions with the RC 
rods, the molecules are slowed down still further, and their influence on the aerodynamic 
characteristics of the RC is completely insignificant, So we neglect them, and also the 
effect of the current attenuation (the absolute error in the aerodynamic force coefficients 
arising as a consequence of the neglect of these factors amounts to 0 (a"@). 

Then, it is sufficient to describe the dependence of the force on the rod surface on the 
direction of incidence of the molecules of the incoming flow and to give the distribution of 
the rods in terms of the diameter and angles of orientation. We will assume that the force 
of the molecules on a rod surface element depends on the local angle of incidence 0 in the 
same way ae in non-equilibrium locally-diffusional scattering - that is, there is no tangential 
force effect of the scattered molecules: c; = 0, the normal force effect coefficient c,-= 
6 cos 8 on the leading side of the rod and c,,- = 0 on the trailing side. To calculate the 
force effect of the scattered molecules on the rods located in P R it is necessary tointegrate 
the value of c over the surface of a cylindrical rod of arbitrary orientation, and then over 
the aggregate of the rods located in Ps. 

The longitudinal force (parallel to the rod axis) that acts on the rod from the scattered 
molecules is not present in locally-diffusional scattering. The transverse force (perpendicular 
to the rod axis, and lying in the plane passing through the rod axis and the current velocity 
vector) I,- that acts on the rod from the scattered molecules is given /2/ by the expression 

f,- = - ‘/,~P~4% [a x [a x ull (3.1) 

Integrating (3.11, we can find the coefficients of the components of the aerodynamic 
effect on the RC. For the regular 4- and 6-ray structures considered above, we find that the 
scattered molecules, like the incident ones, do not give rise to a transverse force in the 
approximation under consideration - that is, up to O(e%fi, eM-*) we have CL = 0. Moreover, it 
turns out that in the approximation under consideration the increase in the resistance force 
due to the scattered molecules does not depend on the current direction - that is, Up to 
0 (~~8, efiMmp) we have Cx.t- = efi (3%d8)(VILs) for a 4-ray structure and CxR = e@(nI2)(VIL') 
for a 6-ray structure. 

4. The aerodynamic moment that acts on the RC is given by the integral over the volume 
of the RC: 

M = {Is [r x FM’ (4.1) 
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where F is the vector of the volume density of the force effect of the current at the point 
R with components Fg,.+, Fya, FZA in the velocity coordinate system .RXAY.$T_* (RX_AI[U; RYA, 

RZa _l_U - see /4/j; r is the vector from 0 to R, relative to which the moment is calculated. 
We introduce the vector coefficient of the moment as m = M/(~~LS). It follows from the 
preceding discussion that 

-$+ = 0 (E), {a , *} I 0 (e& SW*) qcA-* 

Consequently, 

{mYA, mZA} = 0 (d 

For a homogeneous structure, the terms of the first order in e on the right-hand sides 
of (4.2) are constant quantities, and if we move the point 0 to the geometrical centre of the 
RC, which corresponds to the centre of mass for a homogeneous RC, then a constant term will 
give zero on integration. Then for a homogeneous RC 

mXA = 0 (a'@, eZM-%), {tnrAt WA} = 0 (6 

that is, to a first approximation with respect to the parameter E no aerodynamic moment acts 
relative to the centre of mass of an homogeneous RC. 

We will calculate the magnitude of the aerodynamic moment (in the second approximation 
with respect to E) that acts on a homogeneous RC relative to the centre of mass, in the 
form of a right circular cone with base diameter D and height H, for a flow perpendicular to 
the axis of symmetry. Let the OXaxis coincide with the axis of symmetry and be directed 
forwards, and let the OY axis be parallel to the flow. We set L=D. Substituting (2.4) 
into (4.1) and carrying out the integration, we find that,,mr, my = 0 by virtue of the 
symmetry of the flow, and mz = Es (~~/~~o)(~/~)* + 0 f@@, E2M-‘)- 

The author thanks O.G. Fridlender and V.D. Perminov for extensive discussions on the 
subject of this paper. 
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